MATTI EKLUND

ON HOW LOGIC BECAME FIRST-ORDER

The logical systems within which Frege, Schroder, Russell, Zermelo
and other early mathematical logicians worked were all higher-order.
It was not until the 1910s that first-order logic was even distinguished
as a subsystem of higher-order logic.! As late as in the 1920s, higher-
order quantification was still quite generally allowed: in fact, it does not
seem as if any major logician, among non-intuitionists, except Thoralf
Skolem restricted himself to first-order logic.? Proofs were sometimes
allowed to be infinite and infinitely long expressions were allowed in
the languages that were used.

Today, however, first-order logic has gained considerable domi-
nance. Neither higher-order quantification nor infinite expressions and
proofs are standardly allowed within logic. In textbooks of logic, what
is taught is standard first-order logic.? Zermelo-Fraenkel set theory and
Peano arithmetic are almost always formalized in first-order languages.

In this paper I pose the question: how did it happen that first-
order logic became so dominant? In particular, I am interested in why
higher-order elements were excluded from logic.

Thoralf Skolem’s work was undeniably of great importance for this
development. Skolem presented the earliest first-order axiomatizations
of set theory and arithmetic. Moreover, he first proved the Lowenheim-
Skolem theorem for standard first-order logic: and it is in part by
virtue of the fact that this theorem holds for first-order logic that first-
order logic has a neat model theory. What I wish to do in this essay,
however, is to refute the currently popularly held claim that Skolem
also had quite a different kind of influence on the development toward

1See Moore 1988, pp. 113f. It was Hilbert who in a course he gave in the winter
semester of 1917-1918 first introduced first-order logic as a distinct (sub)system of
logic.

%See, e.g., Skolem 1922 and Skolem 1928.

3By standard first-order logic, I mean first-order logic without such extravaganzas
as infinite expressions and infinite proofs.
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first-order logic: that Skolem’s explicit arguments for adherence to
first-order logic had a notable impact on this development.

It appears to be widely held today that arguments from Skolem and
Kurt Godel, both alleged proponents of the thesis that standard first-
order logic is “the logic” (or, if you like, “the true logic” or “the correct
logic”; below I will say something about just what preferring first-order
logic as “the” logic might come to), had notable impact on the devel-
opment toward first-order logic: that they, by means of rhetorically
convincing arguments, helped effect the transition from higher-order
systems to first-order systems being regarded as standard. For exam-
ple, in Moore 1980 and Moore 1988, two standard works on the emer-
gence and eventual dominance of first-order logic, and in Shapiro 1991,
a very influential book on the first-order vs. second-order logic issue,
the importance of Skolem and, to a somewhat lesser extent, Godel is
strongly emphasized. (There are certain differences between Moore
and Shapiro and also between Moore’s two works. For example, in
Moore 1988, only Skolem’s role is emphasized. Since I am primarily
interested in the claim that there was an (influential) Skolem-Gddel
proposal and not in Moore- and Shapiro-exegesis I will not here go into
these differences.)

In Moore 1980 it is said that

after 1930 mathematical logic became increasingly identified with first-order
logic. The logicians (such as Godel and Skolem) who had argued for a more
restrictive logic had triumphed. (Moore 1980, p. 129)

And Stewart Shapiro says that

From [the late 30s] the explicit controversy over higher-order languages sub-
sided, and most logicians began to accept the Skolem-Gd&del proposal that
only the first-order languages are appropriate for their work. (Shapiro 1991,
pp. 192f.)

Neither Moore nor Shapiro exclusively emphasize Goédel’s and Skolem’s
arguments: but they both talk about a Godel-Skolem proposal, a
(heated) controversy over the first-order vs. second-order logic issue,
and an eventual acceptance on the part of (the majority of) other lo-
gicians of the Godel-Skolem proposal; and they emphasize this aspect
of the development.

My main aim with this article is to show that there was no “Skolem-
Godel proposal” at all.* And, of course, still less did other logicians
eventually accept such a proposal.

4 Later, Skolem came to defend, vigorously, the hegemony of first-order logic; but
in Skolem 1922, which is the paper to which Moore and Shapiro refer, he did not
present anything resembling an argument for adherence to first-order logic. Indeed,
you will not find even the thesis that first-order logic is to be adhered to.
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If Skolem and Godel meant to present arguments, these were—as
Moore and Shapiro both recognize—quite clearly bad ones. Indeed,
Shapiro prefers to say not that Skolem and Godel argued for first-order
logic, but that they wurged that first-order logic was the full logic.?
Hence, what I am doing here is in part defending the rationality of the
community of logicians: I defend Skolem and Goédel from the charge
that they presented obviously bad arguments and I defend other
logicians from the charge that they were convinced by these obviously
bad arguments.

The thesis that (standard) first-order logic is the logic (or “true”
logic or “full” logic or whatever you like), I henceforth call the AFOL
thesis (AFOL stands for Adherence to First-Order Logic). The histor-
ical triumph of first-order logic will be called the AFOL development.
The view on AFOL development I wish to refute in this article is the
one that arguments, or at any rate “urgings”, from Skolem and Godel
caused the AFOL development.

1.

Before I go on to criticize the received view on the AFOL devel-
opment, I should say a few more general things about the first-order
vs. second-order logic issue itself. There are lots and lots of differ-
ences between logical systems and lots and lots of different ways in
which a logical system (or a certain aspect of a logical system) can
be preferred over another. When, as in this essay, we only compare
first-order systems with higher-order systems, we are only interested in
differences with respect to expressive resources and semantics. Were we
to compare, e.g., classical and intuitionistic systems, other differences
would have to be taken into account.® I can think of at least three
fairly distinct kinds of reasons for preferring one logical system over
another, even when the logical systems differ only with respect to their
order. First, you might have pragmatic reasons for preferring one sys-
tem over another: you might think that more fruitful research can be
conducted within the one system. Certainly, such considerations have
been influential when first-order logic has been preferred over second-
order logic: for in virtue of the fact that first-order languages equipped

®Shapiro 1991, p. 181.

In this essay I ignore the existence of second-order languages with Henkin- or
first-order semantics. This is because such systems were not taken into account at
the time of the AFOL development. (See Shapiro 1991, section 4.3 for an account
of such semantics for second-order languages.)
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with the standard semantics, as opposed to second-order languages
equipped with the standard semantics, are compact, complete and have
the Lowenheim-Skolem property, they have a much nicer model theory.
Another kind of consideration, which favours second-order systems over
first-order systems, concerns relative faithfulness to mathematics and
mathematical practice. A logical system which more closely captures
ways of reasoning employed within mathematics and which has enough
resources to capture concepts presupposed to be well understood within
classical mathematics is by such considerations preferred over a logic
which does not have these features, for it is then, it is thought, more
useful for the study of (the foundations of ) mathematics.” As concepts
such as finitude, well-ordering, well-foundedness and so on—which are
presupposed as well understood in mathematics—can be characterized
within second-order logic but not within first-order logic, second-order
logic is favoured by considerations of this kind.® A third broad cate-
gory of reasons for preferring one logical system over the other is what
I shall call straightforwardly philosophical or conceptual reasons. Such
considerations may for example proceed from considerations of what
logic, or logicality, really is. Given a characterization of logicality, the
system which embodies all and only logical principles, in which all and
only logical concepts can be characterized, and given which all and only
logical truths are determined as true gets to be called the (full) logic.

It seems that someone who prefers, say, second-order logic for rea-
sons having to do with relative faithfulness to mathematical practice
and someone who prefers, say, first-order logic for conceptual reasons
do not really have a genuine disagreement, but at best a verbal dis-
agreement over the use of the word “logic”: for there is no reason to

"See Corcoran 1973, especially pp. 34ff. and Shapiro 1991, chapter V.

8Let us, by way of illustration, show that finitude is not characterizable in first-
order logic. If finitude is characterizable in first-order logic, there is a set of first-
order sentences whose models are precisely those with finite domains. We show that
from the assumption that a set of sentences I' has finite models of arbitrary finite
cardinality it follows that it also has an infinite model and hence that finitude is not
characterizable within first-order logic. Let ¢, be a sentence of pure first-order logic
expressing that there are at least n objects. We show that A =T'U{¢, : n € N} has
a model. Since first-order logic is compact it suffices to show that every finite subset
of A has a model. Let © be a finite subset of A. From our definitions it immediately
follows that there is an m such that © is a subset of I' U {¢, : n < m}. Since I" by
assumption has models of arbitrary finite cardinality, © then has a model. Hence
all finite subsets of A have models. A accordingly has a model, and this model is
an infinite model of T.

On the other hand, finitude is characterizable in standard second-order logic by
the single sentence FIN(X) = —3f[VaVy(fz = fy = =z = y) AVz(Xz = Xfz) A
Fy(Xy AVz(Xz — fz #2))].
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think that the system which most closely mirrors mathematical prac-
tice also happens to be the system which, for conceptual reasons, is to
be called (full) logic. I am inclined to think that appearances are not
deceiving. However, if the disagreement is not merely verbal, but there
is a real disagreement here, it would seem to have to be about whether
there is any real feature of logicality: the proponent of second-order
logic might deny that and thus rob the proponent of first-order logic of
the ground for his preferences; the proponent of first-order logic might
try to establish the existence of a real feature of logicality and thus
show that even though, for some purposes, second-order systems are
preferable to first-order systems, they are not properly called logical.

There is also reason to distinguish between preference for a logic
in, or as the underlying logic of, the metalanguage and in, or as the
underlying logic of, the object language. There might be reasons for
studying formalizations of theories in which rather weak logics are used
while keeping the metalanguage rich in expressive resources and capa-
ble of characterizing notions like, say, cardinality and finitude. Ignacio
Jané (1993) argues that set theory for the following reason should not
be formalized in a higher-order language: when studying set theory we
are interested in properties of the notion of subset of, but this notion is
presupposed as well understood in the semantics of second-order logic,
for example in that the second-order variables range over the powerset
of the domain. Set theory should accordingly rather be formalized in
first-order logic, where the notion of subset of is not supposed to be
well-understood. This is a presumed reason for doing set theory, and,
since virtually all of mathematics can be reduced to set theory, math-
ematics generally, within a first-order framework. But it seems that
one can buy into Jané’s argument while holding that the metalanguage
should be strong enough to characterize central notions like cardinality
and categoricity.

The reason why considerations such as this are relevant to the
present issue is that the (supposed) evidence that Skolem adhered to
first-order logic is that Skolem held that set theory and arithmetic
should be given first-order axiomatizations, whereas at least for
Shapiro the evidence that Godel adhered to first-order logic is the
(alleged) fact that Godel insisted on a first-order metalanguage. Also,
it is certainly not clear that Skolem (1922) held that the underlying
logic of the metalanguage should be first-order. As Paul Benacerraf
has argued,” Skolem argued that because of the Léwenheim-Skolem
theorem, set-theoretic notions cannot be captured within any formal

9See Benacerraf 1985, p. 93.



152 MATTI EKLUND

system; but they are perfectly well understood within informal
language. And since Skolem’s metalanguage is informal it seems that
in so far as one can speak of its underlying logic, its underlying logic
must not have the Lowenheim-Skolem property. Needless to say,
Skolem neither had the concept of a metalanguage nor that of the
underlying logic of a language. Often the metalanguage is left informal
also today, and I would think that it is an open question with what
right one may speak of the underlying logic of an informal language.

I should note that quite probably, philosophers and mathemati-
cal logicians typically have different reasons for preferring one logical
system over another. However, both philosophers and mathematical lo-
gicians have tended to adhere to first-order logic. That mathematical
logicians have tended to adhere to first-order logic is for example seen
from the fact that ZF and PA are almost always formalized as first-
order theories. Another story needs to be told in order to establish that
philosophers have adhered to first-order logic. There is no space here
to tell this story but ingredients would be: Quine’s influence, the fact
that philosophers within the logical positivist tradition almost exclu-
sively formalized scientific theories as first-order theories, the fact that
Skolem’s paradox (which we will talk about later) has been considered
a genuine problem, and (as we also will touch upon later) the fact that
acceptance of second-order logic as logic has been widely believed to
entail a classification of certain clearly nonlogical truths as logical.

I believe, however, that we all like to think that within the metalan-
guage, notions like finitude and categoricity are not in the least relative.
It seems then that we are committed to one of the theses (i) the un-
derlying logic of the metalanguage is stronger than first-order logic;
(ii) it is not legitimate to speak of the (or a) logic of the (informal)
metalanguage; and (iii) there is something wrong with the Skolemite
reasoning which leads us to think that because the underlying logic of
the metalanguage is not stronger than first-order logic, we cannot with
confidence speak of absolute concepts of, say, finitude and categoricity.

2.

The time has now come to discuss the idea that there was a Skolem-
Godel proposal.

Let us start by discussing what impact Skolem might have had on
the AFOL development. Moore and Shapiro both appear to hold that
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Skolem 1922 is the article by Skolem which has been of most importance
for it.19 Let us hence take a look at that article.

There are three things Skolem does there which need concern us.
(i) Skolem presents the first ever first-order axiomatization of Zermelo
set theory (which later has developed into Zermelo-Fraenkel set the-
ory); (ii) Skolem proves a version of the Lowenheim-Skolem theorem
downwards (in fact, Skolem for the first time proves the Léwenheim-
Skolem theorem downwards for standard first-order logic); (iii) Skolem
presents, for the first time, what later has become known as the Skolem
paradox.

The Skolem paradox runs as follows. There is a theorem of ZF—
and of all other standard set theories—which says that there is at least
one nondenumerable set; more specifically, the set of real numbers,
commonly called R, is such a set. At the same time, the Lowenheim-
Skolem theorem downwards entails that ZF has a denumerable model.
Hence, in a denumerable model it is true that there is a nondenumerable
set. Paradox.

This paradox arises if we formalize set theory (and hold that set
theory only can or should be formalized) in standard first-order logic:
in standard second-order logic (where the second-order variables range
over the whole power set of the domain) none of the Lowenheim-Skolem
theorems holds. For us to obtain the paradox it is essential that we
restrict ourselves to first-order logic or a logic with sufficiently similar
features (i.e. alogic with the Lowenheim-Skolem downwards property).

Formally solving, or dissolving, the Skolem paradox is quite simple.
What the theorem of ZF referred to above literally says is that there
is no one-one relation from R into IV, the set of natural numbers. In-
tuitively, we take the existential quantifier of the theorem!! as ranging
over all relations over N x R, but within a given model the quantifier
ranges only over relations in that model. We must distinguish between
the N and the R of a given model and the “real” N and R. This is a
useful way of putting it: from outside a particular denumerable model
for ZF the set of real numbers of that model is denumerable, but from
within that model it is nondenumerable since the conditions of the the-
orem we have referred to are satisfied: in the model there is no one-one
relation from R into V.

10Shapiro 1991, pp. 181-185; Moore 1988, pp. 95 and 123. In the discussion of
Skolem’s role in Moore 1980 (pp. 113f. and 120ff.), Skolem 1922 is the paper which
is discussed the most.

1 The theorem may be formulated, schematically,

—3F(F is a one-one relation that holds between N’ C N and R).
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This “formal solution” to the paradox is the one presented by
Skolem himself; but although Skolem knows the paradox to have this
straightforward solution he thinks it has far-reaching philosophical
implications. The conclusion Skolem (1922) draws from the paradox
is that the notions of set theory are not capturable within any logical
system. For example, nondenumerability is a set-theoretic notion,
and Skolem thinks that since it is true in denumerable models of
axiomatized set theory (for Skolem, set theory axiomatized in a
first-order language) that there is a nondenumerable set, the notion of
denumerability cannot be captured in axiomatized set theory. In later
articles, Skolem draws even more radical conclusions from the Skolem
paradox: he claims that the set-theoretic notions are essentially
relative; that they have no absolute content for any formal system to
capture. Now, since Skolem drew this conclusion he must either have
been confused on the relationship between first- and second-order
logic or have subscribed to the AFOL thesis. Second-order logic is
otherwise a logic in which the set-theoretic notions, for all that has
been shown, are capturable.!?

As we have seen, Moore and Shapiro both hold that arguments—
or “urgings”—from Skolem were of importance for the AFOL devel-
opment. Furthermore, they hold that Skolem 1922 in particular was
important. We have just seen that a case can be made that Skolem
subscribed to the AFOL thesis at the time of writing the article. Still,
I wish to hold that Moore and Shapiro are wrong. I have five rea-
sons for this. First, neither Moore nor Shapiro even tries to show that
Skolem 1922 had a notable impact on the subsequent development.
And those who have investigated the matter have concluded that the
article in fact was not very widely read. Thus, van Heijenoort writes,

Skolem 1922 seems to have had few readers. It called forth, so far as I
know, only two responses, a review by Fraenkel (1927) and a mention by von
Neumann (1925, p. 232)13

Second, Skolem (1922) does not stress that he formalizes set theory in
a first-order language. It is indeed clear that the only sentences that

12T 6wenheim (1915) had shown that the Léwenheim-Skolem theorem downwards
does not hold for second-order logic.

13Van Heijenoort 1981, p. 112. See also Goldfarb 1979, p. 357 and van Heijenoort
1967, p. 291. Paul Benacerraf (1985, p. 113) claims that as late as 1929, Zermelo
had not read Skolem 1922. This might be some indication of just how unnoticed
Skolem 1922 went. I should also point out that the evidence that Skolem’s paper
went unnoticed ipso facto is evidence that Skolem’s ideas were not very well known:
for the evidence that Skolem 1922 was not very widely read is precisely that other
authors seemed ignorant of, and hardly ever commented on, Skolem’s ideas.
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can be formulated in the formal language Skolem defines in the article
are first-order sentences; but there is no emphasis on this fact. Neither
does Skolem point out that a global restriction to first-order logic (or,
rather, logics with the Lowenheim-Skolem property) is necessary for
the potentially philosophically significant consequences of the Skolem
paradox to follow. Third, Skolem seems unaware of the novelty of re-
garding first-order as the logic. After having presented what he takes to
be the philosophically important consequences of the Skolem paradox,
Skolem goes on to say:

So far as I know, no one has called attention to this paradoxical state of affairs.
... Even the notions of ‘finite’, ‘infinite’, ‘simply infinite sequence’ and so forth
turn out to be merely relative within axiomatic set theory. (Skolem 1922, p.
295)

Had Skolem been aware of the novelty of formalizing set theory in
a first-order language, or, generally, of the difference between first-
and second-order logic, he would not have expressed himself like that.
Skolem’s way of axiomatizing set theory was new. There was no para-
doxical state of affairs to call attention to before Skolem formalized set
theory in a first-order language. It really does seem as if Skolem was
confused on the relation between first- and second-order logic. Maybe
it seems strange that a logician could be confused concerning what
holds within a logic of one order and what holds within a logic of an-
other order; but Gregory Moore (1988) actually argues forcefully that
both Fraenkel and von Neumann in the 1920s were confused on the
very same issue.'* So maybe it should not strike us as that odd that
the same went for Skolem. We should note that Skolem does not really
make explicit in his 1922 paper that his system is first-order. What
he does when characterizing the language of his system is that he says
propositions are built from simple propositions of the form a = b and
a € b by means of the five operations conjunction, disjunction, nega-
tion, universal quantification and existential quantification. It is clear
that the system is first-order in virtue of (i) Skolem’s reasoning in
his proof of the Lowenheim-Skolem theorem; (ii) Skolem’s use of the
term “Zahlaussage” to denote the propositions formed in his system:
when introducing the term “Zahlaussage”, Skolem explicitly refers to
Lowenheim’s term “Zahlausdruck”, which unambiguously meant first-
order expression; (iii) the fact that in a proposition of the form a € b
in Skolem’s system, b is of the same logical type as a. But then Skolem
also says that propositions are formed by means of the five operations
mentioned “in the sense of Schréder (1895)”, and this indicates that

MMoore 1988, pp. 124f.
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Skolem’s system is precisely that of Schroder: but Schroder’s system is
higher-order.'® Fourth, in Skolem 1922 there is not even a hint of an
argument (not even an “urging”) as to why first-order logic should be
regarded as the logic. Fifth, why would logicians after having studied
Skolem 1922 go over to working within the framework of first-order
logic when in that article attention was put to a potential major draw-
back of doing so: the Skolem paradox? If they had completely grasped
the difference between first- and second-order logic, they should have
seen from Skolem’s article that important set-theoretic notions cannot
be captured within first-order logic.

The result proved in the article—the Lowenheim-Skolem theorem
downwards for (standard) first-order logic—of course provides an incen-
tive to work within a first-order framework: it is for example in virtue of
the fact that first-order logic has the Lowenheim-Skolem property that
it has a “nice” model theory. But the fact that Skolem 1922 provided
this kind of incentive does nothing to support Moore’s and Shapiro’s
case: for Skolem’s alleged arguments for first-order logic had nothing
to do with the nice model theory for first-order logic.

I conclude that we have good reason to believe that Skolem 1922
did not have the kind of influence on the AFOL development that
Moore and Shapiro take it to have had.

The closest you ever get, in Skolem’s writings, to an argument for
adherence to first-order logic is in Skolem 1928. There, Skolem re-

15Skolem 1922, p. 293. The whole passage reads as follows: “By a first-
order proposition [ Zahlaussage] (Lowenheim says “first-order expression” [“Zahlaus-
druck”]) is meant a finite expression constructed from class and relative coefficients
in the sense of Schroder (1895) by means of the five logical operations mentioned
above.” Thus, Skolem talks about the systems of Lowenheim, whose system is
first-order, and of Schréoder, whose system is higher-order, as though they were
identical. This could be some indication that there was confusion on Skolem’s part.
Lowenheim, as opposed to Skolem, was clearly not confused on this issue. When
Lowenheim defines first-order expressions (“Zahlausdriicke”) he does it as follows:
“A relative expression in which every ¥ and II ranges over the subscripts, that
is, over the individuals of 1* (in other words, none ranges over the relatives), will
be called a first-order expression” (1915, p. 233). Lowenheim also states that the
Lowenheim-Skolem theorem does not hold for Schréder’s system. Oddly, Skolem is
in Skolem 1920 as careful as Léwenheim to make clear that the only quantification
allowed is first-order. There he says “A first-order proposition [Zahlaussage| is a
proposition constructed from relative coefficients in the sense of Schréder by means
of the five operations mentioned above, with productations [universal quantifiers]
and summations [existential quantifiers] ranging over individuals only” (p. 254). It
would be strange if Skolem in his 1922 paper was confused on the relation between
first-order and second-order logic when in Skolem 1920 he seems to have appreciated
this distinction.
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gards first-order quantification as unproblematic, whereas he regards
second-order quantification, or, as Skolem puts it, quantification over
propositional functions, as at least potentially problematic. Skolem
thinks that it is not clear just what the totality of propositional func-
tions is, and that for quantification over propositional functions to be
admissible it has to be made clear what this totality is. So he asks how
the class of all propositional functions can be defined.!® He finds two
“scientifically tenable” answers.!” One is that one could develop a the-
ory of propositional functions analogous to the theory of sets that was
already developed. (Skolem adds that the concept of a propositional
function pretty well corresponds to the concept of a set.!®) Such a the-
ory would naturally have to be in a first-order language, whence this
suggestion in reality has the immediate consequence that second-order
logic is abolished.

The other “scientifically tenable” answer is that we should first form
all first-order propositional functions. These form a well-defined total-
ity. Then we may introduce second-order quantification as quantifica-
tion over first-order propositional functions and so on. It is not entirely
clear just what this suggestion comes to; but I cannot see but that un-
der neither plausible interpretation of Skolem’s suggestion is Skolem
relativity avoided, and under neither interpretation does Skolem’s sug-
gestion amount to a justification for full second-order logic. One pos-
sible interpretation is that Skolem means that we should first form the
first-order propositional functions as syntactical entities and then intro-
duce substitutional second-order quantification with the second-order
variables ranging over these countably many first-order propositional
functions. Another possibility is that Skolem thinks that we should
first give a domain for the first-order variables, independently of any
assignment of values to second-order variables, and then let the second-
order variables range over the powerset of the domain for the first-order
variables.!?

Either way, only a very mutilated second-order logic is introduced.
If we only allow substitutional second-order quantification, the second-
order variables range over at most denumerably many entities, given
the usual restriction to a countable language. Neither the full strength
of the axiom of induction of PA nor the full strength of the replacement

16GQkolem 1928, p. 516.

7 Ibid.

18Skolem belonged to Schroder’s algebraic school, whose formal calculus could be
interpreted, and was interpreted, both as a calculus of classes and as a calculus of
propositions.

19Skolem 1928, p. 516f.
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axiom of ZF can be captured. And if we first separately assign values
to the first-order variables, we have Skolem relativity at hand. For
in the class of models for a consistent set of first-order sentences (in
a countable language), there are, according to the Lowenheim-Skolem
theorem downwards, denumerable models. And the cardinality of the
domain does not change when we assign values to the second-order
variables.

It should be clear that this argument of Skolem’s rests upon the
presupposition that there is something problematic about second-order
quantification. Hence there is no reason to believe that Skolem 1928
had decisive impact on the AFOL development: either Skolem’s
suspicion toward second-order quantification was not widely shared, in
which case his argument should not be very convincing, or there was
widespread suspicion toward second-order logic already when Skolem
published his 1928 paper, in which case we should look toward the
sources of this suspicion.

Let us now examine Moore’s and Shapiro’s contention that argu-
ments (or, as Shapiro prefers to call them, urgings) from Godel were
important for the AFOL development. The only text they refer to
when arguing Godel’s importance for that development is the Godel-
Zermelo correspondence of 1931.20 Shapiro alleges that Godel there
“insisted on a finitary and first-order metalanguage”.?! Moore says
that “The question of which logic was appropriate for set theory—
first-order logic, second-order logic, or an infinitary logic—culminated
in a vigorous exchange between Zermelo and Gdédel around 19307 .22
However, neither Moore nor Shapiro provides us with any quotation
from the Godel-Zermelo correspondence showing it to be the case that
Godel there did insist on a first-order metalanguage.

We may also wonder how what Go6del wrote in private correspon-
dence can be enough for Shapiro to talk about a “Skolem-Gd6del pro-
posal”, eventually accepted by the majority of logicians: it would cer-
tainly have to be shown that any arguments for a first-order logic Godel
presented in his correspondence with Zermelo were known by (promi-
nent persons in) the community of logicians for Shapiro’s claim that
the community of logicians eventually accepted a proposal from Go6del
to be made good.

20The Godel-Zermelo correspondence is published in Grattan-Guinness 1979 and
Dawson 1985.

21Qhapiro 1991, p. 191.

%2Moore 1980, p. 95. As I said above, Moore no longer emphasizes Gédel’s role
in Moore 1988.
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Furthermore, if we study Godel’s letter to Zermelo, we find that
Godel there, though he does insist on an—in certain respects—finitary
metalanguage (Godel did insist, as against Zermelo, that proofs are,
by their very nature, finite?®) does not explicitly insist on a first-order
language.

In Moore 1980, we find the claim that Gddel in the famous article
“Uber formal unentscheidbare Sétze der Principia mathematica und
verwandter Systeme I” (1931), in which Gddel presented his incom-
pleteness theorem, Godel worked within a system of first-order logic:

Shortly afterward [after 1930, when Godel published his completeness theo-
rem for first-order logic] Godel published an abstract of his incompleteness
theorem, which made a positive solution to the Entscheidungsproblem highly
unlikely. The theorem stated that Peano arithmetic contains undecidable
propositions if formulated in the (first-order) logic of Principia mathematica.
(Moore 1980, p. 125)%4

Presumably, if Gédel (1931) worked within the framework of first-order
logic, this would lend some support, if not much, to the claim that
Godel only thought first-order languages appropriate. I guess this is
the reason why Moore (1980) claims that Godel did restrict himself to
such a language.

Moore’s claim is, of course, false. In his 1931 article, Godel worked
within a version of type theory:

The primitive signs for the system P [the formal system Gddel proved incom-
plete (1931)] are the following: (I) Constants ... (II) Variables of type 1 (for
individuals, that is, for natural numbers including 0): “x1”, “y1”, “z1”, ...
Variables of type 2 (for classes of individuals): “x3”, “yo”, “20”, ... Variables

of type 3 (for classes of classes of individuals): “x3”, “y3”, “z3”, ... And so
on, for every natural number as a type. (Godel 1931, pp. 151, 153)

The axiom of induction is in its full second-order form:

The following formulas are called azioms ...: L ... (3)
22(0).21 [ (z2(x1) D z2(fz1)) D 21 [] (z2(21)) [or, in more modern notation,
(22(0) AVz1(z2(21) — 22(821))) = V1 (22(21)); M.E.]. (Gbdel 1931, p. 155)

Godel also makes use of the axioms of extensionality and of compre-
hension:

. (IV) Every formula that results from 1. (Eu)(v ][] (u(v) = a)) [in more
modern notation, JuVv(u(v) <> a); M.E.] when for v we substitute any vari-
able of type n, for u one of type n + 1, and for a any formula that does not

Z3This insistence amounts neither to an insistence that logic (somehow) is finitary
nor that the metalanguage should be finitary, as Shapiro intimates; it is merely a
reflection on the nature of proof.

24This claim is, I should add, no longer made in Moore 1988.
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contain u free ... (V) Every formula that results from 1. z1[](z2(z1) =
y2(21)) D 2 = y2 [Vzi(z2(z1) ¢ y2(71)) — 22 = yo| by type elevation.
(Ibid.)

This is not first-order logic; this is (a version of) type theory.?® It is
somewhat misleading to speak of today’s Peano arithmetic as the sys-
tem which Godel proved incomplete, since our first-order Peano arith-
metic in several respects differs from that system.

There is, indeed, a well-known interpretation of type theory in
many-sorted first-order logic, by virtue of the existence of which the
system of Principia mathematica may be regarded as first-order, albeit
many-sorted. But there is no hint in Gédel 1931 that Godel viewed
type theory that way. Also, today we would regard classes as being
in the range of the first-order variables, but that was emphatically not
how Russell and most of those who used the system of Principia math-
ematica—for example Gédel—viewed the matter.

Moore also alleges that “Influenced by Hilbert and Skolem, Go6del
operated within a ... finitistic tradition of logic. Thus he confined
his researches to first-order logic”.26 The latter statement appears
to be quite far from the truth. Go6del worked within many different
areas and systems. By no means did he confine his researches to
standard first-order logic. If we for example take a look at Volume I of
Godel’s Collected Works, which contains all of Gédel’s published works
between 1929 and 1936, we find that Godel occasionally worked within
standard first-order logic (most famously, of course, in the papers in
which Godel presents his proof of the completeness of first-order logic,
or, as Godel calls first-order logic, der engere Funktionenkalkil—the
narrower functional calculus), in other places worked within type
theory (for example in Godel 1931), and in several other places
discussed intuitionistic logic and the propositional calculus. If we also
see to Godel’s reviews of the works of other authors, we find that
Godel worked within still other systems.

Similar things can be said concerning Godel’s role in the AFOL
development as can be said about Skolem’s role in this development.
Godel, like Skolem, undeniably had an important role to play in this
development. He proved first-order logic complete and he contributed
to the development of von Neumann-Bernays-Godel (NBG) set theory,
which, unlike ZF, is finitely axiomatizable in first-order logic.

But Goédel did not contribute to the AFOL development by pre-
senting arguments for adherence to first-order logic.

258ee Boolos 1993, p. xx; Dawson 1991, p. 98; Kleene 1986, p. 129.
26Moore 1980, p. 129.
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3.

If arguments (or “urgings”) from Skolem and Goédel did not play
a major role in the AFOL development, what did? Of course, there
were several causes of the AFOL development. A (most certainly
incomplete) list of probable causes will be presented below. What I
will do in the remainder of this essay is to add some pieces to the
answer to the question of the AFOL development. First I will sketch
an account of how the analysis of quantification in the 1920s might
have helped cause the AFOL development, and below I will present
the (even more tentative) suggestion that there might be a connection
between Tarski’s model-theoretic analyses of the notions of logical
truth and logical consequence (and, quite generally, the emergence
of model theory as a mathematical discipline) and the emergence of
first-order logic as the de facto standard in logic.

Because of the paradoxes that had been discovered (e.g. Russell’s
and other paradoxes) and to some extent because of the intuitionis-
tic challenge, several logicians in the 1920s felt induced to embrace
(Hilbertian) finitism. The idea was to secure (the consistency of) clas-
sical logic and classical mathematics by “finitary”, and hence episte-
mologically innocuous, methods. Even logicians not directly belonging
to Hilbert’s school, like Thoralf Skolem, were clearly influenced by this
development.

The quantifiers constituted a major obstacle for any finitistic anal-
ysis of logic: they brought in the possibly infinitary. It was thus impor-
tant, for Hilbert and those who were influenced by his finitism, to find
an acceptable finitary analysis of the quantifiers, so that also sentences
with unrestricted quantifiers were, as it were, secured epistemologically.

Several analyses of the quantifiers, intended to make them more
innocuous, were offered. In my presentation of such analyses here, I
will closely follow Goldfarb 1979. In this paper, Goldfarb argues that
these analyses were not only meant as technical devices, but also to
capture the very meaning of quantification and to explain how finite
intelligences like us can grasp quantification over infinite totalities.

In his proof of the Léwenheim-Skolem theorem downwards (1920),
Skolem passes from satisfaction of a formula in a model to the exis-
tence of what we today would call Skolem functions for the existen-
tial quantifiers of that formula. According to Goldfarb, Skolem saw
a close connection between existential variables and choice functions,
and this view was typical for how one in the 1920s came to regard
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quantifiers.?” Goldfarb claims that Skolem was of the opinion that the
most that could be done by means of existential quantification was to
demand there to be a suitable value to choose for the variable existen-
tially quantified over for every assignment of values to the universally
quantified variables. An important consequence was that the at most
denumerably many Skolem functions cannot lead us “out of the denu-
merable” .28

In his 1922 proof of (a slightly different version of) the Léwenheim-
Skolem theorem downwards (Skolem 1922), Skolem starts out by defin-
ing effective functions over natural numbers, and then shows that these
functions can function as an interpretation of the existential variables.??
Goldfarb claims that this even more accentuates the fact that Skolem
viewed choice functions as the most that existential quantifiers can
imply the existence of:

This gives an even sharper form to the idea that choice functions provide
an upper bound on the power of quantification. With respect to satisfia-
bility, first-order propositions cannot distinguish their intended objects from
the integers; consequently we may take the quantifiers to represent effective
functions on the integers. (Ibid.)

Influenced by Hilbertian ideas, Jacques Herbrand wanted to analyse
quantification theory in a finitistically acceptable way. For this pur-
pose he attempted to analyse the provability of quantified sentences in
terms of truth-functional validity. In order to do this he introduced
the concept of expansion.’® An expansion of an existentially quanti-
fied formula is a disjunction of quantifier-free instances of the formula
obtained according to certain instantiation rules. Herbrand sought to
show that a formula is derivable in his axiomatic system if and only
if the expansion of its negation is truth-functionally inconsistent. It is
the left-to-right implication which is problematic.3!

Let us now turn to Hilbert himself. Hilbert used his e-operator
to obtain a finitistically acceptable analysis of quantification theory.
If A(z) contains no free variables other than z, the e-term e, A(x)
denotes an object ¢ such that A(c) holds, given that there is such an
object; otherwise it denotes an arbitrary object. If A(z) contains free
variables other than z, €, A(z) represents a function of these variables;

2TGoldfarb 1979, p. 357. By no means does Goldfarb claim that Skolem caused
this development.

%8 Ibid.

2 Goldfarb 1979, p. 358.

30Tn the French original, Herbrand uses the term réduite, which literally means
reduction.

1 Goldfarb 1979, p. 364.



ON HOW LOGIC BECAME FIRST-ORDER 163

this function gives a value for z such that A(x) holds, if there is such a
value, given assignments of values to the other free variables. Hilbert
provides an axiom schema for the e-operator, A(t) — A(e,A(z)), such
that we can define the quantifiers in terms of this operator. JzA(x)
is defined to be equivalent to A(e;A(x)), and VzA(z) is defined to be
equivalent to A(e,(—A(x))).

e-analysis of quantification is for several reasons very attractive to
the finitist: (i) Since every proof is finite, the e-operator is used there
only finitely many times, so only finitely many choices of values are
ever made; only finitely many instances of the axiom schema for the e-
operator are used in a proof; (ii) Only finitely many elements are needed
as e-terms. Thus, only finitely many elements are ever taken account of
in a proof. According to Hilbert, we can, through the use of e-analysis
of quantification, prove the consistency of a logical system by finitary
means through repeated assignments of values to the e-terms, which
assignments can be made effectively. This bears a marked resemblance
to Herbrand’s ideas. In a given proof, there are only finitely many
quantified sentences, each with only finitely many quantifiers. The
quantifiers are analysed by Hilbert with the aid of the e-operator, and
by Herbrand by means of the so-called expansions. Goldfarb claims
that Herbrand’s work was of considerable importance for obtaining the
Hilbert-Bernays e-theorems.3?

Hilbert’s e-operator is in effect only a device for analysis of first-
order quantification, as I will now argue. Hilbert certainly cannot have
thought so himself; on the contrary, e-analysis was supposed to be appli-
cable to quantification in general, and Hilbert allowed also higher-order
quantification. But the values of the e-function are explicitly said to
be elements of the domain: and only the elements in the range of the
first-order variables are elements of the domain. Hence it is natural
that even in contexts where Hilbert eventually introduces second-order
quantification, the e-operator is used only for analysis of first-order
quantification.?® Hilbert’s official view is that all quantification should
be analysed by means of the e-operator, but in practice this only goes
for first-order quantification. The step to regard only first-order quan-
tification as kosher is not far. Moreover, if infinite objects such as
functions defined for infinitely many values or properties such as be-
ing a natural number can be values of variables, as is the case when

%2Goldfarb 1979, p. 365.

33See Hilbert 1927, p. 466. I do not mean to say that e-analysis was never used to
analyse higher-order quantification. There are papers in which quantification over
functions is allowed and where the quantifiers ranging over functions are analysed
by means of the e-operator; a prominent example is Ackermann 1924.
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higher-order quantification is allowed, nothing is achieved by e-analysis
of quantification. For then the question how we can grasp the infinite
objects that are being quantified over remains: it has not been ex-
plained how finite intelligences can grasp the infinite. We have indeed
two distinct problems: one concerns grasp of quantification over infi-
nite domains; the other concerns grasp of infinite objects. But it seems
that an answer to the problem of our grasp of infinite objects ipso facto
should be an answer to the question of how we can grasp quantification
over infinite domains: for it would show how, in general, we can grasp
infinite totalities. The e-analysis of quantification does not provide us
with an answer to the question how we can grasp infinite objects—
on the contrary it provides a means for evading that problem—and it
seems that any distinct solution to this as yet unsolved problem would
render e-analysis of quantification obsolete. Hence there is a conflict
between the e-analysis of quantification and allowing infinite objects in
the range of the variables.

These remarks on the importance of finitist analyses of quantifi-
cation for the AFOL development are of course only meant to add
something to the complex picture of the development: as everyone
seems agreed on, the development had several distinct (though
presumably related) causes. Among these are (a) the exclusion of
set theory from the realm of logic, which exclusion was probably
partly caused by the discovery of the set-theoretic paradoxes and the
axiomatic treatment of set theory, (b) the then only recently clearly
made distinction between syntax and semantics, (c) the presenta-
tion of first-order logic as a distinct subsystem of logic in Hilbert
and Ackermann’s influential textbook (1928) and Goddel’s proof of
the completeness of this logical system, (d) finitist and nominalist
qualms about the objects over which second-order variables were
supposed to range, (e) Skolem’s first-order formulations of Zermelo
set theory and Peano arithmetic and Bernays’ and Godel’s first-
order formulations of NBG set-class theory. Needless to say, (a)—(e)
are not independent of each other; there are connections between them.

I would also like to make another suggestion concerning the AFOL
development, one that is even more tentative than the previous one.

In his book The Concept of Logical Consequence (1990), John
Etchemendy discusses Tarski’s analyses of the concepts of logical truth
and logical consequence very critically. Etchemendy’s contention is
that the analyses are faulty: they are not even extensionally correct.

Today, an influential criticism of second-order logic is that within
second-order logic, sentences which should not come out logically true
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or false come out that way. For example, the sentence of pure second-
order logic which expresses the continuum hypothesis itself comes out
logically true or false, respectively, depending on its truth or falsity
in the underlying set theory. So if we hold that the continuum hy-
pothesis is not logically true or false, second-order logic is, qua logic,
seriously deficient. But this line of reasoning depends crucially on our
presupposing an understanding of logical truth as truth in all mod-
els: Tarski’s conception of logical truth. If Etchemendy is right, it is
Tarski’s analysis and not second-order logic that is deficient.

The relevance of all this to the question of what caused the AFOL
development is that if Tarski’s analysis of logical truth and logical con-
sequence turns out to give correct results only with regard to first-order
logic, this faulty analysis, favouring first-order logic, might seem to co-
incide too well in time with the development toward first-order for it to
be a mere coincidence. There seems then to be a very interesting an-
swer to the question of what the connection is between the acceptance
of first-order logic and the acceptance of Tarski’s model-theoretic anal-
yses of the notions of logical truth and logical consequence. A plausible
suggestion is that the acceptance of first-order logic as standard as well
as the acceptance of Tarski’s analyses had to do with the emerging in-
terest in model theory: as is well known, standard first-order logic has
a much nicer model theory than standard second-order logic; and the
Tarskian analyses of logical truth and logical consequence are model-
theoretical.
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