
What is the 
infi nite?
ØYSTEIN LINNEBO CHECKS IN TO HILBERT’S HOTEL

is not only interesting but also fun, not least 

because of the way considerations about math-

ematics and philosophy (as well as theology, for 

those so inclined) are woven together. 

To put the infi nite in perspective, let’s begin 

with some examples of very large fi nite quanti-

ties. Space provides some good examples. A trip 

around the equator is about 40,000 km. The 

distance to the moon is about ten times as large. 

The distance to Mars is about 143 times larger 

still. Now we take a big jump. The nearest star 

other than the sun, Alpha Centauri, is about 4.2 

lightyears away and thus 750,000 times as remote 

as Mars. The nearest other galaxy is about 6,000 

times farther still, namely 25,000 lightyears. And 

T
he famous mathematician David 

Hilbert introduces our topic as follows 

in his essay “On the Infi nite”: “The 

infi nite has always stirred the emotions 

of mankind more deeply than any other ques-

tions; the infi nite has stimulated and fertilised 

reason as few other ideas have; but also the infi -

nite, more than any other notion, is in need of 

clarifi cation.”

Before trying to answer whether there is such 

a thing as the infi nite, let’s do as Hilbert recom-

mends and clarify the concept. I shall do so by 

charting its development, paying special atten-

tion to two conceptual revolutions. Throughout, 

I hope to show how thinking about the infi nite 
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of course, all these huge distances are nothing 

compared with the universe itself, which extends 

far beyond what I have described. 

So are space and time infi nite in extent? It 

may seem obvious that they are. No matter how 

far you travel in any chosen direction, you will 

never reach a boundary or an “end of space”. 

You will always be able to go on. But this doesn’t 

actually prove that space is infi nite. To see this, 

consider an ordinary two-dimensional sphere, 

such as the surface of the earth. Here too one 

can travel indefi nitely far in any given direc-

tion without ever encountering a boundary. The 

surface of the sphere is nevertheless fi nite in area. 

An analogous possibility exists for the universe 

as a whole. It’s mathematically possible that the 

universe is geometrically more like a sphere than 

a plane and thus, although without boundaries, 

fi nite in extent. Whether or not this mathemat-

ical possibility describes our real universe is an 

empirical question for cosmology, not for math-

ematics or philosophy. It turns out that different 

cosmological models yield different answers. The 

universe appears to be fi nely balanced between 

being such as to make space and time infi nite and 

being such as to make both fi nite. 

In order to fi nd clearer and less controver-

sial examples of infi nities, let’s leave the messy 

physical world and turn to the serene and 

abstract world of pure mathematics. Consider 

for instance the natural numbers, that is, the 

numbers 1, 2, 3, etc. For every natural number, 

we can describe a larger number simply by 

adding one. We can get to large numbers more 

quickly by describing larger jumps up the number 

sequence. Multiplication provides an easy way 

to describe fairly large numbers. Exponentiation 

provides signifi cantly larger jumps. Consider for 

example 1080, that is, the result of multiplying 10 

with itself 80 times. This is a remarkably large 

number: It is larger than the number of atoms in 

the (observable) universe. But with some clever-

ness we can do even better. 

There is an operation, known as super-expo-

nentiation, which stands to exponentiation as this 

stands to multiplication. For instance, 10 to the 

super-exponent 3 – written superexp(10,3) – is 

10 to the power of 1010. And superexp(10,80) is 

a truly gigantic number – so large that, if written 

out in ordinary decimal notation, it would require 

more zeros than there are atoms in the universe! 

Yet even this gigantic number is vanishingly small 

when compared with the totality of the natural 

numbers. Imagine there is an infi nite queue and 

you’re in position superexp(10,80). Although you 

no doubt face a long wait, your position is actu-

ally uncharacteristically good. Because there are 

infi nitely many natural numbers, the proportion 

of people in the queue whose position is better 

than yours is superexp(10,80) divided by infi nity, 

which is zero! 

The word “infi nite” is derived from “without 

any limit”. This provides an apt characterisation 

of the ancient concept of infi nity as well. To be 

infi nite (apeiron) was to be without a limit or 

bound. By contrast, the contemporary concept 

of infi nity is that of being larger than any natural 

number. For instance, to say that there are infi -

nitely many stars is to say that for any natural 

number n, there are more than n stars. 

How are these two concepts of infi nity – 

unboundedness and being larger than any 

Are space and 
time infi nite?
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natural number – related? For millennia, the 

two concepts were thought to be coextensive. 

One implication is fairly straightforward. If a 

magnitude is unbounded, then its size cannot be 

measured by any natural number, as this number 

would otherwise provide a bound. But the 

reverse implication is problematic. Assume that 

some magnitude is not bounded by any natural 

number. Does it follow that the magnitude is 

unbounded? It is useful to think of the bounds as 

measuring sticks that are longer than the object 

to be measured. Our question is then whether 

there can be measuring sticks longer than those 

provided by the natural numbers. For millennia 

the answer was assumed to be no: everything that 

is bounded at all is bounded by a natural number. 

We shall see that this is false. The last 130 years 

have seen the discovery of some enormous meas-

uring sticks, much longer than those provided by 

any natural number. 

The ancients drew an important distinction 

between actual and potential infi nity. An infi nity 

is actual if all of it actually exists. For instance, an 

infi nity of currently existing atoms would be an 

actual infi nity. By contrast, an infi nity is merely 

potential if it is tied to some unlimited possibility 

of going on. A nice example of Aristotle’s is the 

infi nite divisibility of matter. Consider a stick. No 

matter how many times you have bisected the 

stick, it’s possible to do so again – perhaps not in 

practice, as your knife may be too dull, but it’s 

certainly possible in principle. 

Aristotle held that there can be no actual 

infi nities, only potential ones. This view was an 

ingenious attempt to reconcile two apparently 

confl icting views. On the one hand, Aristotle 

thought that actual infi nities lead to paradox, in 

part for reasons related to Zeno’s famous para-

doxes. (Some later arguments to the same effect 

are considered below.) On the other hand, there 

appear to be examples of the infi nite, for instance 

space, time, and the natural numbers. The para-

doxes are avoided by denying the actual infi nite, 

while the apparent examples of the infi nite are 

analysed as involving only the potentially infi nite. 

The transition from the ancient concept of 

infi nity to our contemporary one saw two major 

conceptual revolutions: one sensible, another 

problematic. 

As mentioned a moment ago, actual infi nities 

were thought to lead to paradoxes. The famous 

thought experiment of “Hilbert’s hotel” provides 

a striking example of the alleged paradoxes. 

Consider a hotel with infi nitely many rooms, each 

labelled with a distinct natural number. It’s a busy 

night at the hotel: every room is occupied. Then 

another guest shows up. Fortunately, the recep-

tionist has a brilliant idea. What if the guest in 

room one moves to room two, the guest in room 

two moves to room three, and so on? Then every 

current guest will have a room to herself, while 

room one has been made available for the new 

guest. This is surprising! By reassigning rooms 

in an entirely full hotel, we can free up a room! 

Obviously, no such thing is possible in an ordi-

nary hotel with “only” fi nitely many rooms. 

The example can be continued further, as 

realised already by the medievals. Once again 

the hotel is fully booked. But this time, infi nitely 

many new guests arrive and request rooms. After 

It’s possible that the 
universe is more like a 

sphere than a plane
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a brief panic, the receptionist has another bril-

liant idea. What if every current guest moves 

to the room whose number is twice that of her 

present room? Then every the current guest will 

have a room to herself – whose room number 

is even – while the infi nitely many rooms whose 

number is odd have been made available for the 

new guests. Thus, by reassigning rooms in an 

entirely full hotel, we can free up just as many 

rooms as were previously occupied!

What exactly is it that makes these exam-

ples so puzzling? The fi rst example shows that 

there are precisely as many rooms numbered 

two and above as there are rooms in total. Yet 

the latter collection exceeds the former by one 

member, namely room number one. The second 

rearrangement shows that there are precisely as 

many rooms with an even number as there are 

rooms in total. Yet the latter collection seems 

twice as large as the former. So both examples 

show that a proper subset of the rooms can have 

as many members as the set of all the rooms. A 

proper part is thus shown to be as large as the 

whole! But this contradicts a seemingly solid 

axiom due to Euclid, which says that every whole 

is larger than its parts. Let’s call this Euclid’s prin-

ciple. What is puzzling about the examples is that 

an actual infi nity, such as Hilbert’s hotel, would 

falsify Euclid’s principle. 

This used to be regarded as a reductio ad 

absurdum of the idea of an actual infi nity. But 

this response was too quick. All that the examples 

reveal is a confl ict between two of our central 

beliefs about the infi nite, namely Euclid’s prin-

ciple that every whole is larger than its parts and 

the principle that size or number is a matter of 

one-to-one correspondence and thus preserved 

under any rearrangement of a collection. Gregory 

of Rimini analysed this confl ict already in the 

fourteenth century, arguing that we are operating 

with two incompatible concepts of size. 

My own view (which arguably is implicit in 

current mathematical practice) is different. 

I believe it is essential to our conception of 

number that the number of objects in a collec-

tion is an intrinsic property of the collection and 

thus invariant under any rearrangement of it. 

For instance, the number of people initially in 

Hilbert’s hotel is identical with the number of 

people in the hotel after a reassignment of rooms 

(and before admitting any new guests). Although 

each has moved to a different room, we are, after 

all, talking about the very same people. 

Our attachment to Euclid’s principle is based 

on an overgeneralisation from ordinary fi nite 

cases, where the principle holds. But the prin-

ciple fails in extraordinary cases involving infi nite 

totalities. So we are free to retain the connection 

between our concept of number and one-to-one 

correspondences. The lesson of the above exam-

ples is not that the concept of an actual infi nity is 

paradoxical but that Euclid was wrong in thinking 

that the whole is always larger than its proper 

parts. This conclusion was fi rst clearly articu-

lated by the father of the modern theory of sets 

and infi nity, Georg Cantor (1845–1918), and has 

since become part of mainstream mathemat-

ical practice. As a result of this fi rst – and very 

sensible – conceptual revolution, we now possess 

a clear and univocal concept of size or number. 

The road is now open to the development 

of the modern mathematics of infi nity. This is a 

Aristotle held that there 
are no actual infi nities
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story in which Cantor is our hero. One of his most 

famous discoveries is a theorem now bearing his 

name, which says that there are more subsets of 

a given set than there are elements. In particular, 

there are more subsets of the natural numbers 

than there are natural numbers. This in turn 

means that the number of subsets of the natural 

numbers is larger than the number of natural 

numbers, that is, that one infi nite number is 

larger than another! In fact, Cantor’s theorem 

implies that there is an unbounded sequence of 

larger and larger infi nite numbers. 

Given this development, what becomes of 

the traditional concept of infi nity as unbounded-

ness? Recall that the distinction bounded versus 

unbounded is relative to a system of measuring 

sticks that can serve as bounds. An object may 

be too large to be bounded by one collection of 

measuring sticks yet be bounded by a larger kind 

of measuring stick. This observation becomes 

particularly important in light of Cantor’s discov-

eries. The familiar collection of measuring sticks 

provided by the natural numbers is now supple-

mented with the much larger measuring sticks 

provided by Cantor’s new numbers. In light of 

this, what is the more natural continuation of the 

traditional concept of infi nity? 

One option is to regard a magnitude as infi nite 

if, and only if, it cannot be bounded by any of our 

ordinary measuring sticks, namely the natural 

numbers. This is the option adopted in standard 

mathematical practice. The resulting picture is 

the one described above: the natural numbers 

are followed by an unbounded sequence of infi -

nite numbers. 

Another option would have been to regard 

something as infi nite just in case it cannot be 

bounded by any measuring stick, including 

Cantor’s new and extraordinary ones. In my 

view, this would have been the more appro-

priate development. Since “fi nite” originally 

meant “bounded” or “measurable”, the result of 

discovering a new system of longer measuring 

sticks should be to regard more things as fi nite – 

albeit in a generalised sense. On this alternative 

conceptual development, Cantor’s new numbers 

would have been regarded not as infi nite but as 

a generalisation of the fi nite. By contrast, on the 

conceptual development that actually prevailed, 

the word “infi nite” shifted its meaning from 

something unbounded or unlimited to something 

that isn’t bounded by any natural number. This 

conceptual revolution lacked the justifi cation 

enjoyed by the other one in which Euclid’s prin-

ciple was rejected as inessential to our concept of 

number. However, despite my misgivings about 

this revolution, I shall continue to use what has 

become standard terminology and thus classify 

as infi nite anything that cannot be bounded by a 

natural number. Following Cantor, we may char-

acterise as “absolutely infi nite” anything that has 

no bound whatsoever. 

We have distinguished and clarifi ed various 

conceptions of the infi nite. Whether the infi nite 

should be said to exist will obviously depend on 

which conception is brought to bear. 

Let’s begin with today’s standard mathemat-

ical concept of the infi nite, namely something 

whose size exceeds any individual natural 

number. Modern mathematics provides many 

examples of objects falling under this concept. 

For instance, the natural numbers are generally 

thought to form a set, which is infi nite in the rele-

vant sense. Moreover, since the members of this 

set are regarded as “all there”, this infi nity can be 

classifi ed as actual and not merely potential. The 

tpm 2ND QUARTER 2013

4646

th
o

u
g

h
ts

/in
fi n

ity

TPM-61-TEXT.indd   46TPM-61-TEXT.indd   46 10/04/2013   10:38:1610/04/2013   10:38:16



alleged paradoxes of the actual infi nite pose no 

threat to this view, or so I have argued. 

It might be objected that these mathematical 

examples of the infi nite don’t exist in the robust 

sense in which planets and stars exist but merely 

as intellectual constructs. If true, this would 

mean that there are only as many truths about 

the infi nite as follow logically from our concepts. 

And this might have dramatic consequences for 

mathematics. For some very basic set theoretic 

questions provably cannot be answered on the 

basis of our best current set theory. A famous 

example is Cantor’s Continuum Hypothesis, 

which says that the number of real numbers is 

the smallest infi nite number greater than the 

number of natural numbers. Might there simply 

be no answer to this question despite its apparent 

meaningfulness? 

One way to assuage such worries is to fi nd 

new mathematical axioms which may settle the 

question. In fact, this quest for new axioms is one 

of the main projects in contemporary set theory, 

with Hugh Woodin as its unoffi cial leader. 

Another response would be to fi nd realisa-

tions of the infi nite in nature. For instance, if a 

physical line has precisely the structure of the 

real numbers, then there must be some objec-

tive fact as to how many real numbers there 

are and thus an objective truth concerning the 

Continuum Hypothesis. 

So is the infi nite realised in nature? Cantor 

thought so. Given the existence of the infi nite in 

mathematics, he argued, it would confl ict with 

the greatness and omnipotence of God if He 

did not also ensure that the concept is realised 

in nature. Needless to say, this argument relies 

on questionable theological premises. Hilbert 

took the opposite view: “The infi nite is not to be 

found anywhere in reality, no matter what expe-

riences and observations or what kind of science 

we might adduce”. So who is right, Cantor or 

Hilbert? Current physical theory provides no 

clear verdict. It is of course true that space and 

time are without boundaries. But we have seen 

that this does not entail their infi nitude. There 

are other possible realisations of the infi nite as 

well, in connection with black holes or quantum 

fi elds, the theories of which are up to their necks 

in infi nities – if taken literally. However, it is far 

from clear that every aspect of these theories 

should be taken literally. 

Finally, there is the question of the existence 

of the absolute infi nite, that is, a magnitude that 

transcends any bound whatsoever. Theology 

apart, there is no reason to expect such infi nities 

to be found outside of the world of mathematics. 

Apparent mathematical examples include the 

collection of all sets and the collection of all 

numbers (fi nite and transfi nite). But here paradox 

is lurking. As we’ve seen, the concept of the abso-

lute infi nite is intimately related with the ancient 

concept of infi nity. Serious worries therefore 

arise about the coherence of the actual exist-

ence of such infi nities as opposed to their merely 

potential existence as an unbounded process of 

generation of ever larger sets and numbers. 

Øystein Linnebo is professor of philosophy at 
Birkbeck, University of London, and the University 
of Oslo. He works primarily in philosophical logic 
and the philosophy of mathematics, and has 
published widely in these and related areas. 

This article is based on a lecture given at the Big 
Ideas pub philosophy group. You can listen to the 
original event and fi nd upcoming events at bigi.
org.uk.
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