
From CG-2/vislcg to CG-3
New developments in the Constraint

Grammar formalism

Eckhard Bick & Tino Didriksen

University of Southern Denmark
VISL Project, ISK

GrammarSoft / GramTrans

CG Oslo 2008

Constraint Grammar – what is it?

● (1) a methodological paradigm for handling token-
linked information in a contextual, rule-based
fashion (Karlsson 1990, 1995)

● (2) a descriptive convention within the dependency
camp, supporting a lexical approach with a clear
form-function distinction

● reductionist, focus on disambiguation, robust, fast,
“non-chomskyan” ..

● (A) a formal language to express context grammars

● (B) a number of specific compiler implementations
to support different dialects of this formal language

CG Oslo 2008

Adding full numbered dependency

O <artd> DET M S @>N #1->3
último ADJ M S @>N #2->3
diagnóstico N M S @SUBJ> #3->9
elaborado V PCP2 M S @ICL-N< #4->3
por PRP @<PASS #5->4
a <artd> DET F S @>N #6->7
Comissão=Nacional PROP F S @P< #7->5
não ADV @ADVL> #8->9
deixa V PR 3S @FMV #9->0
dúvidas N F P @<ACC #10->9
$. #11->0

● Integrated formalism: FDG (Tapanainen)
● Add-on attachment rules: PALAVRAS, DanGram ...(Bick)
● Constraint Grammar-internal: CG3 (Bick & Didriksen)

CG Oslo 2008

CG rules

● rules add, remove or select morphological,
syntactic, semantic or other readings

● rules use context conditions of arbitrary distance
and complexity (i.e. other words and tags in the
sentence)

● rules are applied in a deterministic and sequential
way, so removed information can't be recovered
(though I t can be traced). Robust because:

– rules in batches, usually safe rules first

– last remaining reading can't be removed

– will assign readings even to very unconventional
language input (“non-chomskyan”)

CG Oslo 2008

some simple rule examples

● REMOVE VFIN
IF (*­1C VFIN BARRIER CLB OR KC)
exploits the uniqueness principle: only one finite verb per clause

● MAP (@SUBJ> @<SUBJ @<SC) TARGET (PROP)
IF (NOT ­1 PRP)
syntactic potential of proper nouns

● SELECT (@SUBJ>)
IF (*­1 >>> OR KS BARRIER NON­PRE­N/ADV)

(*1 VFIN BARRIER NON­ATTR)
clause­initial np's, followed by a finite verb, are likely to be subjects

CG Oslo 2008

TEXT

Cohorts
“<crea>”
 “crear” V PR 3S IND
 “crear” V IMP 2S
 “creer” V PR 1/3S SUBJ

Disambiguation

Mapping

Analyzer

Morphology

Lexica

Substitution

External
e.g.DTT

Disambiguation

Mapping

Disambiguation

Mapping

...
Dep.

PSG
external
modules

Syntax

polysemy

sem. roles

tagger

coches “coche” <Vground> N M P @ACC §TH #4->2

CG flowchart

CG Oslo 2008

Language Parser Lexicon Analyzer Grammar Levels

da DanGram
100.000 lexemes,

40.000 names
Full 8.000 rules

morph., syntax, dep., psg,
case roles

pt PALAVRAS
70.000 lexemes,
15.000 names

Full 7.500 rules morph., syntax, dep., psg

es HISPAL 73.000 lexemes Full 4.500 rules morph., syntax, dep., psg

en EngCG 160.000 sem Full 4.400 rules morph., syntax, dep., psg

fr FrAG 57.000 lexemes
DTT +
analysis

1.400 rules
morph.-correction, syntax,

dep., psg

de GerGram 25.000 val/sem (Full)
LS+1.300

rules
morph. (Lingsoft), syntax,

dep., psg

eo EspGram 30.000 lexemes Full 2.600 rules morph., syntax, dep.

it ItaGram 30.600 lexemes
DTT +
analysis

1.600 rules morph., syntax, dep.

se SveGram 63.000 lexemes Full adapted da morph., syntax, dep.

CG languages (VISL/GS)

CG Oslo 2008

VISL languages (others)

● Basque
● Catalan
● English ENGCG (CG-1, CG-2, FDG)
● Estonian (local)
● Finnish (CG-1?)
● Irish (Vislcg)
● Norwegian (CG-1)
● Sami (CG-3)
● Swedish (CG1, CG-2?)
● Swahili (Vislcg)

http://paginaspersonales.deusto.es/abaitua/konzeptu/nlp/MGnag.html
http://mutis.upf.es/cgi-bin/catcg/demo.pl%20CATCG
http://www2.lingsoft.fi/cgi-bin/engcg
http://citeseer.ist.psu.edu/muurisep99determination.html
https://www.cs.tcd.ie/Elaine.UiDhonnchadha/disamb.htm
http://www.hf.uio.no/tekstlab/tagger.html
http://www.divvun.no/doc/tools/docu-sme-manual.html
http://www2.lingsoft.fi/doc/swecg/intro/

CG Oslo 2008

Performance and uses

● Published performance for system-internal evaluations
is astonishingly high across languages, with F-scores for
mature systems around

● 99% for POS
● 95% for syntactic function (shallow dependency)
● Relative performance in open joint evaluation:

– e.g. HAREM (Portuguese NER & classification)

● Supports a wide variety of applications
– Grammar checking (Norwegian, Swedish, Danish ...), e.g.

OrdRet (better at weighting suggestions than Word)

– Corpus annotation (e.g. treebanks) and teaching

– IR, NER and QA

– MT and other semantic stuff

– Anaphora resolution

CG Oslo 2008

Some history and comparisons:
CG “dialects”

● Common to all CG systems:
– the context-dependent manipulation of tag-encoded linguistic

information at the token level (formally, akin to regular expression
substitutions)

– implemented as REMOVE, SELECT, MAP, ADD, REPLACE,
SUBSTITUTE ...

● Differences at the implementational level:
– programming language: Lisp, C/C++, finite state

– speed, e.g. cg2 (Tapanainen 1996) = 6 x vislcg (Martin Carlsen)

– proprietory (cg1, fdg/conexor), academic (cg2), project-bound
(Müürisep 2005), commercial (FDG conexor.com), open source
(vislcg, cg3)

– cross compiler compatibility?
[cg1] <-> [cg2 > vislcg > cg3]

CG Oslo 2008

Differences at the Grammar level

● Differences in expressive power
– scope: global context (standard, most systems) vs. local context

(Lager's templates, Padró's local rules, Freeling ...)

– templates, implicit vs. explicit barriers, sets in targets or not,
replace (cg2: reading lines) vs. substitute (vislcg: individual tags)

– topological vs. relational

● Differences of applicational focus
– focus on disambiguation: classical morphological CG

– focus on selection: e.g valency instantiation

– focus on mapping: e.g. grammar checkers, dependency relations

– focus on substitutions: e.g. morphological feature propagation,
correction of probabilistic modules

CG Oslo 2008

The CG3 project

● 3+ year project (University of Southern Denmark &
GrammarSoft)

● some external or indirect funding (Nordic Council of
Ministries, ESF) or external contributions (e.g. Apertium)

● programmer: Tino Didriksen
● design: Eckhard Bick (+ user wish list, PaNoLa, ...)
● open source, but can compile "non-open", commercial

binary grammars (e.g. OrdRet)
● goals: implement a wishlist of features accumulated over

the years, and do so in an open source environment
● enabling hybridisation of methodologies: CG, dependency

grammar, probabilistic methods, ...
● support for specific tasks: MT, spell checking, anaphora ...

CG Oslo 2008

The CG3 project -2

● working version downloadable at http://beta.visl.sdu.dk
● compiles on linux, windows, mac
● speed: equals vislcg in spite of the new complex features,

faster for mapping rules, but still considerably slower
than Tapanainen's cg2 (working on it).

● documentation available online
● sandbox for designing small grammars on top of existing

parsers: The cg lab

http://beta.visl.sdu.dk/

CG Oslo 2008

A rules file 1
(definitions)

DELIMITERS = "<.> "<!>" "<?>" ; # sentence window

SETS

LIST NOMINAL = N PROP ADJ PCP ; # nominals, i.e. potentieal nominal heads
LIST PRE-N = DET ADJ PCP ; # prenominals
LIST P = P S/P ; # plural
SET PRE-N-P = PRE-N + P ; # plural prenominals, equivalent to (DET P) (DET S/P)
(ADJ P) (ADJ S/P) (PCP P) (PCP S/P)
LIST CLB = "<,>" KS (ADV <rel>) (ADV <interr>) ; # clause boundaries
LIST ALL = N PROP ADJ DET PERS SPEC ADV V PRP KS KC IN ; # all word
classes
LIST V-SPEAK = "dizer" "falar" "propor" ; # speech verbs
LIST @MV = @FMV @IMV ; # main verbs

CG Oslo 2008

A rules file 2
(morphological disambiguation)

CONSTRAINTS

REMOVE (N S) IF (-1C PRE-N-P) ; # remove a singular noun reading if there is a
safe plural prenominal directly to the left.

REMOVE NOMINAL IF (NOT 0 P) (-1C (DET) + P) ; # remove a nominal if it isn't
plural but preceded by a safe plural determiner.

REMOVE (VFIN) IF (*1 VFIN BARRIER CLB OR (KC) LINK *1 VFIN BARRIER
CLB OR (KC)) ; # remove a finite verb reading if there are to more finite verbs to the
right none of them barred by a clause boundary (CLB) and coordinating conjunction
(KC).

CG Oslo 2008

A rules file 3
(syntactic disambiguation)

MAPPINGS

MAP (@SUBJ> @ACC>) TARGET (PROP) IF (*1C VFIN BARRIER ALL -
(ADV)) (NOT -1 PROP OR PRP) (NOT *-1 VFIN) ; # a proper noun can be either
forward subject or forward direct object, if there follows a finite verb to the right with
nothing but adverbs in between, provided there is no proper noun or preposition
directly to the left, and a finite verb anywhere to the left.

CONSTRAINTS
REMOVE (@SUBJ>) IF (*1 @MV BARRIER CLB LINK *1C @<SUBJ BARRIER
@MV) ; # remove a forward subject if there is a safe backward subject to the right
with only one main verb in between

CG Oslo 2008

CG Contexts

● Context conditon: word form “<...>”, base form “....”,
tag A-Z, <[a-z]> @[A-Z], combinations ...

● direction: + (right), - (left)
● Position marker:

– 0 self

– local right: 1, 2, 3 ..., local left: -1, -2, -3, ...

● Globality
– * continue until match is found

– ** continue also across context match to fulfil further (linked)
conditions

– 0* nearest neighbour: search in both directions

● Careful: C, e.g. *1C (only unambiguous readings)

CG Oslo 2008

CG contexts 2

● NOT: conditions can be negated
– (NOT *1 VFIN)

● contexts can be LINKed
– (*1C xxx LINK 0 yyy LINK *1 zzz)

● searches can have a BARRIER
– (*1 N BARRIER VFIN)

● contexts can be ANDed
– IF (0 xxx) (*1 yyy) (NOT *-1 zzz)

● contexts can be negated as a whole
– (NEGATE *1 ART LINK 1 ADJ LINK 1 N)

CG Oslo 2008

Mapping (MAP, ADD)

● Usually as a special section (MAPPING or BEFORE-
SECTIONS), but in cg3 allowed anywhere

● Strictly ordered
● Both MAP and ADD can be used to add tags, but:

– MAP "closes" a line for further mapping (but not SUBSTITUTE!)
even if the mapped tag(s) does not contain the flagged prefix
(default @)

– ADD maps, but allows further mapping

● MAPed tags can be "seen" by later mapping rules, even
in the same section

MAP (@SUBJ) TARGET (N) IF (NOT *-1 NON-PRE-N)
MAP (@SUBJ) (N) (NOT *-1 NON-PRE-N)

CG Oslo 2008

Substitutions (new in vislcg)

● Replaces a tag or tag chain with another, useful for:
– correcting input from other modules, e.g. stochastic taggers

– correcting lower level CG once higher lever information is
available

– spell or grammar checkers

● Usually as a special section (CORRECTIONS or BEFORE-
SECTIONS), but in cg3 allowed anywhere

● 'TARGET' and 'IF' are optional
● Strictly ordered
● SUBSTITUTE does not "close" a line for mapping
● SUBSTITUTEd tags can be "seen" by later SUBSTITUTE

or Mapping rules, even in the same section

SUBSTITUTE (UTR) (NEU) TARGET (@<SC)
 IF (*-1C @SUBJ> + NEU BARRIER CLB)

CG Oslo 2008

REPLACE

● REPLACE replaces all non-baseform tags with a new tag
chain, hence it has one argument less than
SUBSTITUTE; used for:
– corrections where only the baseform is o.k., e.g. verbal tense

errors

● REPLACE works like a mapping operator, closing the
line for further mapping

● it is less versatile than SUBSTITUTE, but backward
compatible with CG2

REPLACE (V IMPF AKT) TARGET ("<.*ede>"r)
 IF (-1 (PERS NOM) (1 ikke)

CG Oslo 2008

New CG-3 features

● a) rules and window management
● b) tag operations, positions and contexts
● c) grammar management (flags, call options)
● d) the big additions: subsuming - on top of CG's native

topological/field-based approach - all other descriptive
syntactic traditions:
– 1. Dependency Grammar: c, p, s

– 2. Constituent Grammar: templates

– 3. Unification Grammar: $$SET

● e) subsuming competing methodological techniques,
on top of the native tag manipulation techniques
– 1. Integrating regular expressions

– 2. Integrating statistical information

CG Oslo 2008

Individual and soft DELIMITers

● an on-the-fly sentence (disambiguation window)
delimiter

● for cases where the delimiter has to be decided from
context

[wordform] DELIMIT <target> [contextual_tests]

● used as delimiter if a disambiguation window
approaches the soft-limit for window size (default 300),
before hard window breaking (default 500)

SOFT-DELIMITERS = "<$;>" ;

CG Oslo 2008

Rule Management

● Run only once (cp. VISLCG's MAPPING / CORRECTIONS)
● Especially for

– adding ambiguity, e.g. Syntactic, semantic roles etc.

– Post-processing errors from previous modules

BEFORE-SECTIONS
AFTER-SECTIONS

● Any type of ryle anywhere in the grammar
● Any type of set definition anywhere in the grammar
● Anything changed by a rule can be seen by all

subsequent rules, including ADD, MAP and SUBSTITUTE
● Any tag anywere in a cohort reading (order independent)

CG Oslo 2008

Named Rules

● REMOVE:rule_name <target> [contextual tests]
● MAP:rule_name <tags> <target> [contextual tests]
● rule names need not be unique

CG Oslo 2008

Rule application order

● each rule on all cohorts (VISLCG: each cohort all rules)
● more predictable results, since rule order is not text

dependent
● less need for order-forcing via sections, so sections can

be used for their primary purpose, task modularity and
heuristicity

ForEach (Window)
 ForEach (Rule)

 ForEach (Cohort)
 ApplyRule

CG Oslo 2008

Tag operations

● Tag Inversion (!-prefix)
– e.g. !GEN matches every tag but GEN

– make sense only in combination: (N !GEN) ... for German the
same as the set union of (N NOM) (N ACC) (N DAT)

● Fail Fast Tag (^-prefix)
– prevents a set from matching - regardless of other tag-

matchings in the set - if the fail-fast tag is present, too, in the
relevant cohort line

– e.g. SET PRE-N = ART DET ADJ ^<nphead> ^@P< ;

REMOVE @<ACC (0 @<SUBJ LINK 0 (<H.*>r) OR (".*ist"r)
-> discard object in favor of subjects if the token is +HUM

CG Oslo 2008

NEGATE

● implements aspects of the TEMPLATE idea (being able
to refer to - and to negate - chunks of internally linked
tokens

● will invert the result of the entire LINK'ed chain that
follows

● whereas NOT will only invert the result of the
immediately following test

● VISLCG emulated NEGATE with parenthesis-initial NOT

(NEGATE *1 (AUX) LINK 1 (@AUX<)) ;
(NEGATE *-1 N LINK -1 DEF) ;

CG Oslo 2008

CBARRIER

● like BARRIER, but only if unambiguous
● i.e. less strict than BARRIER

(**1 N CBARRIER VFIN) ;

CG Oslo 2008

Nearest Neighbour

● Magic offset 0, scans for nearest neighbour in both
directions (-1 -> 1 -> -2 > 2 -> ... -n -> n)

● especially useful to collapse two contexts (1. example)
or two rules (2. example) into one

(NOT 0* VFIN) ; -> no other finite verb candidates
(0* VFIN BARRIER CLB) ; -> presence of a verb in the

same clause

CG Oslo 2008

Spanning Window Boundaries

● Span Left (<): allows to span left boundaries
● Span Right (>): allows to span right boundaries
● Span Both (W): allows to span boundaries right and left
● Default ± windows, otherwise

– command line flag: --num-windows

● Always allowing all spans to cross boundaries
– command line flag: --always--span

(*1> ("http.*")) ; -> find urls
(*-1< UTR + @SUBJ BARRIER CLB) ;

-> pronoun gender resolution
(*-1W (<Vground>) ; -> text about cars

CG Oslo 2008

String tag modifiers

● applies to (a) token tags, (b) base form (lexeme) tags,
(c) <...> secondary tags

● literal string modifier 'i' = case insensitive
– "<Wordform>"i, "baseform"i, <secondary>i

● literal string modifier 'r' = regular expression
– ".*ize"r --- a certain group of transitive verbs in English

– <[HA].*>r --- semantic prototype tag for animates, i.e. humans
(e.g. <Hprof>) and animals (e.g. <Aorn>)

REMOVE @<ACC (0 @<SUBJ LINK 0 (<H.*>r) OR (".*ist"r)
-> discard object in favor of subjects if the token is +HUM

CG Oslo 2008

Creating Dependencies

● create dependencies on the fly
● change existing dependencies
● circularity

– a rule won't be applied if it introduces circularity

– however, if there IS circularity further up in the ancestor chain
from a previous module, then it will be accepted

SETPARENT (@>N) (0 (ART DET)) TO (*1 (N)) ;
SETPARENT (@P<) TO (*-1 (PRP)) ;

SETPARENT (@FS-N<) TO (*-1 N LINK NOT p SELF)

CG Oslo 2008

Using Dependencies

● accepts input from other programs in cg-format:
– ... #n->m

● in a rule, dep-relations (letters) replace positions
(numbers), NOT, * and C behave “correspondingly”
– Parent/Mother (p)

– Child/Daughter (c)

– Sibling/Sister (s)

SELECT (%hum) (0 @SUBJ) (p <Vcog>)
-> assign +HUM to subjects of cognitive verbs

SELECT (@ACC) (NOT s @ACC)
-> uniqueness principle

(*-1 N LINK c DEF)
-> definite np recognized through dependent

ADD (§AG) TARGET @SUBJ (p V-HUM LINK c @ACC LINK 0 N-
NON-HUM) ;

CG Oslo 2008

labelled arcs for other purposes

● instead of the default dependency arcs, other relations
can be defined:

● SETRELATION (referent) TARGET (<rel>) TO (*-1 N) ;
(Set a ”referent” relaton from a relative pronoun to a noun occurring
earlier in the sentence.)

● leads to: ID:n R:identity:m

– n: arc base (here pronoun) word number

– identity: relation name introduced by R

– m: arc head (here the referent noun) word number
● REMRELATION – removes one direction of a relation

– REMRELATION (name) targetset () TO ()
● SETRELATIONS and REMRELATIONS simultaneously handle 2

names for the two directions of a relation

CG Oslo 2008

Parenthesis enclosures

● problem: text within parentheses often has independent
syntax, with only a single link to the outside sentence

● problem: CG rules have difficulties in scanning across
parentheses, and may wrongly interact with
parenthesis content

● solution: Normally, parenthesis content may attach
(left) out of the parenthesis, while outside consituents
don't attach to inside tokens. Therefore, it helps
syntactic cohesion to ignore parentheses in a first pass.
With more than one parenthesis, or nested
parentheses, this is best done in a layered, iterated
fashion.

CG Oslo 2008

Parenthesis enclosures 2

● PARENTHESES = ("<$(>" "<$)>") ("<$[>" "<$]>") ("<
${>" "<$}>") ("<$«>" "<$»>") ;

● _LEFT_ and _RIGHT_ are magic tags (and sets!) for the
left and right parenthesis wordforms of the active
enclosure

● MAP (@SUBJ>) TARGET (N NOM) (*1C VFIN BARRIER N OR _RIGHT_)

● Contextual positions L and R, referable only from within
a parenthesis (i.e. the active enclosure)

● ADD (@acc) TARGET N/PROP/PRON-NOM
(-1C N/PROP/PRON + NOM) (*-2 NON-PRE-N/ADV LINK NOT 0 PRP) (*1C

VFIN BARRIER NON-ADV) (NOT L ("<[>")) ; # la politikistoj tion volas šanği,
not: [san majkrosistemz]

CG Oslo 2008

Probabilistic / statistical tags

● expects input tags with colon-separated numerical
values:
– <Conf:80> (confidence values, e.g. for suggestions of a spell

checker

– <Verb:70> (e.g. monogram PoS-likelihod for a given token)

● all positive integer values are possible, a cohort sum of
100% for confidence is an optional convention, as is the
use of relative frequencies

REMOVE (<Conf<5>)
-> confidence threshold 5 (%)

REMOVE (<Noun<=10>) (NOT -1 PRE-N)
-> context dependent frequency threshold 10%

CG Oslo 2008

"Magic" sets

● _S_DELIMITERS_ is the standard set of delimiters
● _S_SOFT_DELIMITERS_ refers to the set of soft

delimiters
● _LEFT_, _RIGHT_ refer to the active parentheses as tags
● _L_, _R_ refer to their positions
● (*) is the all-set, useful for:

– negative NON- sets: NON-PRE-N = (*) - PRE-N

– referencing a position rather than a tag:
(1 (*) LINK *-1 VFIN BARRIER NON-V) ... finds the heading finite
verb of a verb chain even if the target is itself the VFIN

CG Oslo 2008

TEMPLATE
● labels for complex contexts conditions, which – once defined – can then be
used by many different rules, or even in other templates.

● TEMPLATE np = (ART LINK 1 N) OR (ART LINK 1 ADJ LINK 1 N)

● referenced as (*1 VFIN LINK *1 (T:np)).

● Currently, templates still need obligatory positions, so that the above
would have to be written as

● TEMPLATE np = (0 ART LINK 1 N) OR (0 ART LINK 1 ADJ LINK 1
N) and then referenced as (*1 VFIN LINK **1 (*) LINK (T:np))

● Optimally, the use of positions inside the template should be optional,
although that would imply different treatment of templates in rules. It would
thus constitute an error to use a positioned template with a position, or a
non-positioned one without a position. To make the diffence clearer, we
could use T:/TEMPLATE (non-positioned) and PT:/PTEMPLATE
(positioned).

CG Oslo 2008

Unification

● A way of using tag variables in rule contexts
● LIST CASE = NOM GEN DAT ACC ;
● SELECT $$CASE (1 KC) (2C $$CASE) ;
● SELECT $$NUMBER + ADJ (-1C $$NUMBER + ART/DET)
● unification of reg.ex. strings:

– allowing $$sets with “....”r base forms and <....>r secondary tags

– allows only .*, not more complex expression

● SETRELATION (anaphor) TARGET @SUBJ> + $$PROSEM TO
(W*-1 @SUBJ> + $$PROSEM BARRIER $$PROSEM) (*1 VFIN
LINK 0 @FS-STA LINK NOT 0 <cjt>) ;

– using: LIST PROSEM = <H.*>r <A.*>r <L.*>r <sem.*>r ;

CG Oslo 2008

Dynamic point of origin

● -o “a la “ cg-1, don't cross position 0
● Dynamic switching on of this feature: O

treats last context as “origin”, if used with linked contexts

● Dynamic switching off of this feature: o
valid for all further contexts in this rule

● Use of O/o in connection with dependency contexts:
● SETPARENT (@FS-N<) (O*-1 N LINK p (*))

on-the-fly circularity check against relative clauses
linking to their own subject

CG Oslo 2008

Regressive linking

● Problem: How to check a negative context or a parent,
then continue linking from the original spot

● Solution so far (and only for non-dependency):
.... LINK *1 X LINK NOT 1 Y LINK -1 ALL LINK

● New, general solution:
– X = dynamic origin (“0”) - if omitted, it defaults to rule target

– x = dynamic regressive linking

● MAP (§AG) TARGET @SUBJ>
(Xc @FS-N< LINK Sc @ICL-AUX< LINK 0 V-HUM
LINK xc <rel> + @SUBJ>

● equivalent to the longer:
MAP (§AG) TARGET @SUBJ>

(c @FS-N< LINK -1 ALL LINK *1 @MV LINK 0 V-HUM)
(c @FS-N< LINK c <rel> + @SUBJ>

CG Oslo 2008

Input Stream Commands

● an input stream can have some control over the
programme pipe, using 1-line commands as part of the
input:

● CGCMD:FLUSH ... cuts execution, breaks all windows
– useful for text type changes, e.g. after head lines etc.

● CGCMD:EXIT ... stops execution (use after FLUSH)
– useful for trial runs where only the first part of a large corpus is

to be analysed

● CGCMD:IGNORE ... causes input to be ignored until
RESUME (use after FLUSH)
– useful to skip binary data, lists, poems, text in the wrong

language etc.

● CGCMD:RESUME ... resumes analysis after an IGNORE

CGCMD:

CG Oslo 2008

Runtime options 1
● --grammar, -g ... the grammar file to use for the run
● --vislcg-compat, -p ... compatible with older VISLCG
● --trace ... adds debug output
● --prefix ... sets mapping prefix, default @
● --sections ... sections to run, default all

● -- sections 6
● -- sections 2-5,10-12

● --single-run ... only runs each section once.

CG Oslo 2008

Runtime options
● --no-mappings ... disables MAP, ADD and REPLACE rules.
● --no-corrections ... disables SUBSTITUTE and APPEND
● --num-windows ... window buffer span, default ±2
● --always-span ... always scan across window boundaries.
● --soft-limit ... token limit for SOFT-DELIMITERS (def. 300)
● --hard-limit ... token limit for hard window breaks (500)
● --o target position (origin) will halt a context scans

● this can be achieved locally by adding upper case 'O' to a context
position (which then defines its contextual “parent” as origin

● if set, the origin-block can be undone by adding a lower case 'o' to a
contextual position

● REMOVE (origin) IF (*-1O (left) LINK *1 (middle) LINK *1o (right)

CG Oslo 2008

Input/Output options

● -O or --stdout ... file to print output to instead of stdout.
● -I or --stdin ... file to read input from instead of stdin.
● -E or --stderr ... file to print errors to instead of stderr.
● -C or --codepage-all ... codepage to use for grammar,

input, and output streams. Defaults to ISO-8859-1.
● --codepage-grammar ... odepage to use for grammar
● --codepage-input ... codepage to use for input
● --codepage-output ... codepage to use for output
● -L or --locale-all ... locale to use for grammar, input, and

output streams. Defaults to en_US_POSIX.
● --locale-grammar ... locale to use for grammar
● --locale-input ... locale to use for input
● --locale-output ... locale to use for output

CG Oslo 2008

Optimization by rule ordering
and/or context ordering:

 Speed vs. heuristicity

● Speed: We have experimented with a cost-benefit
analysis for CG rules, and achieved differences in speed
around 30% by rules with a high benefit/cost ratio first
– disambiguation gain: SELECT > REMOVE, frequent rules first

(also: avoid "ghost" checking rules), "heavy" sets first, POS
targets vs. word targets, target frequency (not used)

– processing cost:
● rules length (in number of contexts)
● global > local contexts
● NOT/C > simple check

CG Oslo 2008

● Heuristicity/safety ordering (inspired by T. Lager):
– with gold corpus: assign each rule an error likelihood: how often

did it remove a CORRECT tag, reiterative reordered runs

– overriding the last-tag-exception: how often would a rule have
removed a CORRECT tag if it had been allowed

● Removing unused rules in a corpus-dependent fashion
– vislcg3 call with a special flag and a text corpus

– outputs a “lean” grammar, that will run faster

– safe: unused rules at bottom

– unsafe: unused rules removed

– could be used for domain optimization or for grammars by
different authors for the same languages, where the second
grammar is tuned so as to address only issues the first
grammar hasn't handled

CG Oslo 2008

● speed-up by removing unused set definitions
– now implemented in grammar-compilation internally

– also possible for the rules file proper: clean-cg

● speed-up of grammar start-up (implemented):
– compile and run binary grammars – also useful commercially

– vislcg3 –grammar rules --grammar-bin binary

– cg3-autobin.pl – creates binary grammar first time and keeps
using it from until changes in the original rules files are noted

CG Oslo 2008

###
##########################
#
use: eval_cg file1 file2
#
compares two cg files, either a gold file with a test file, or simply two
different runs on the same input.
#
(1) Input format can either be niceline or cohort format
(a) niceline: word [base] <...> ... POS MORF ... @FUNC ...
(b) cohort: "<word>"
"base" <...> ... POS MORF ... @FUNC
"base" <...> ... POS MORF ... @FUNC
...
However, only for syntatic tags (@) is ambiguity allowed - cohort format will
be truncated to one morphological line per cohort (the first). Output format will
be "niceline".
#
(2) rewrites testfile with difference markers (3a-d), followed by file1 line
number and file1 tag (in parentheses). For syntax, the parenthesis will also
contain a hit-out-of count, e.g. 1/2.
#

Evaluation

CG Oslo 2008

###
##########################
#

(3) At the end of the rewritten file2, eval_cg will output file difference as an
evaluation metrics, providing recall, precision and F-score for
(a) base form *B
(b) part of speech *P
(c) morphology *M
(d) syntax *S
#
(4) The program has no special alignment needs - it will tolerate some
tokenisation difference (e.g. regarding polylexicals). Tokenisation mismatches
will be marked in the rewritten file2 as *T_missing, *T_extra and *T_mismatch
followed by the corresponding line number in file1, in the case of many to
many mismatches also with an unti-n/m indicator, where n and m are the
respective line numbers of the point where alignment was reestablished
#
###
##########################

CG Oslo 2008

still missing from the wish list

● handling of data- and rule-driven meta-variables
– domain, text type, language recognition

– SETVARIABLE, REMVARIABLE

● plus many loose ideas
● Now's the time for adding more :)

CG Oslo 2008

Teaching: e.g. VISL tools

1. TextPainter

CG Oslo 2008

2. Interactive syntactic tree building

CG Oslo 2008

CG Oslo 2008

3. KillerFiller:
Automatic corpus-based slot-filler exercises

CG Oslo 2008

Question-answering systems (EPIA2003):
better question-typing

QUE:fcl

=ADVL:adv('quando' <interr>)Quando
[=FOC:adv('é=que') foi=que]

=P:v-fin('nascer' PS 3S IND) nasceu

=SUBJ:prop('Balladur' <hum> M/F S) Balladur
=?

From this information the system fills in a number of variables:
question pattern (Atemp-PS)
interrogative constituent: Q-word ("quando"), Q-function ("ADVL")
predicator information: P-base ("nascer"), P-tense ("PS")
search point constituent: S-string ("Balladur"), S-function ("SUBJ"), S-head ("Balladur")

CG Oslo 2008

Hit sentence: Balladur nasceu em Esmirna (Turquia), em 1929, e
formou-se na Escola Nacional de Administração, de onde saiu a elite
da função pública francesa.

STA:cu
CJT:fcl
=SUBJ:prop('Balladur' <hum> M/F S) Balladur
=P:v-fin('nascer' PS 3S IND) nasceu
=ADVL:pp
==H:prp('em') em
==P<:np
===H:prop('Esmirna' <civ> M S) Esmirna
===(
====N<PRED:prop('Turquia' <civ> F S) Turquia
===)
=,
=ADVL:pp
==H:prp('em') em
==P<:num('1929' <date> <card> M S) 1929
=,

CG Oslo 2008

syntactic analysis permits to extract more implicit knowledge, e.g. ISA
relations from appositions, predicatives and relative clauses:

1. Onde é/fica Smirna

2. Quando Rakhmonov derrubou o governo?

A guerra civil no Tadjiquistão, que fez mais de 50 mortos, começou em 1992,
quando as forças do neo-comunista Rakhmonov derrubaram o governo dos
islamistas ...

SUBJ:np
=H:n(<HH>) forças
=N<:pp
==H:prp de
==P<:np
===>N:art o
===H:n(<hum>) neo-comunista
===N<:prop(<hum>) Rakhmonov

● (a) name-np-flattening: post-nominal or appositive names are substituted
for the np, whose head they are dependent of: O neo-comunista
Rakhmonov -> Rakhmonov

● (b) toto-pro-pars: semantic heads of postnominal de-pp's are substituted
for the pp: as forças de Rakhmonov -> as forças Rakhmonov

Apply a - b - a

CG Oslo 2008

Machine Translation:
Polysemy resolution, Lexical transfer

udsætte_V

● {opsætte} :postpone, :put=off;

● D=(@ACC) D=("for")_to :expose;

● D=(<prize> @ACC) :offer;

● S=(INF) M=(<quant>) :criticize;

● D=("vagt")_sentry :post;

● D=(<Vwater> @ACC) :put=out;

● D=("lejer" @ACC) :evict;

CG Oslo 2008

Machine Translation:
Movement rules, Structural transfer

● I dag @ADVL drikker @FMV vi @SUBJ vin @ACC ­ Today
we drink wine

● (@ADVL|@ACC|@FS-ADVL|@FS-ACC|@>>P), I_dag
 w(@FMV|@FAUX|@FS-[^Q]+),drikker

w(@ICL-AUX<)?,
w(@ADVL)?,

(@SUBJ|@F-SUBJ|@S-SUBJ)vi
-> 1, 5, 2, 3, 4

CG Oslo 2008

A user-friendly Corpus interface

CG Oslo 2008

Simple text searches: fx. eg. composita

CG Oslo 2008

Menu based category search

CG Oslo 2008

imperatives
animal

expressions

